Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607054

RESUMO

Alterations in olfactory functions are proposed as possible early biomarkers of neurodegenerative diseases. Parkinson's and Alzheimer's diseases manifest olfactory dysfunction as a symptom, which is worth mentioning. The alterations do not occur in all patients, but they can serve to rule out neurodegenerative pathologies that are not associated with small deficits. Several prevalent neurodegenerative conditions, including impaired smell, arise in the early stages of Parkinson's and Alzheimer's diseases, presenting an attractive prospect as a snitch for early diagnosis. This review covers the current knowledge on the link between olfactory deficits and Parkinson's and Alzheimer's diseases. The review also covers the emergence of olfactory receptors as actors in the pathophysiology of these diseases. Olfactory receptors are not exclusively expressed in olfactory sensory neurons. Olfactory receptors are widespread in the human body; they are expressed, among others, in the testicles, lungs, intestines, kidneys, skin, heart, and blood cells. Although information on these ectopically expressed olfactory receptors is limited, they appear to be involved in cell recognition, migration, proliferation, wound healing, apoptosis, and exocytosis. Regarding expression in non-chemosensory regions of the central nervous system (CNS), future research should address the role, in both the glia and neurons, of olfactory receptors. Here, we review the limited but relevant information on the altered expression of olfactory receptor genes in Parkinson's and Alzheimer's diseases. By unraveling how olfactory receptor activation is involved in neurodegeneration and identifying links between olfactory structures and neuronal death, valuable information could be gained for early diagnosis and intervention strategies in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Transtornos do Olfato , Doença de Parkinson , Receptores Odorantes , Humanos , Doenças Neurodegenerativas/patologia , Olfato/fisiologia , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Transtornos do Olfato/diagnóstico
2.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474266

RESUMO

One of the hallmarks of Parkinson's disease (PD) is the alteration in the expression and function of NMDA receptor (NMDAR) and cannabinoid receptor 1 (CB1R). The presence of CB1R-NMDAR complexes has been described in neuronal primary cultures. The activation of CB1R in CB1R-NMDAR complexes was suggested to counteract the detrimental NMDAR overactivation in an AD mice model. Thus, we aimed to explore the role of this receptor complex in PD. By using Bioluminescence Resonance Energy Transfer (BRET) assay, it was demonstrated that α-synuclein induces a reorganization of the CB1R-NMDAR complex in transfected HEK-293T cells. Moreover, α-synuclein treatment induced a decrease in the cAMP and MAP kinase (MAPK) signaling of both CB1R and NMDAR not only in transfected cells but also in neuronal primary cultures. Finally, the interaction between CB1R and NMDAR was studied by Proximity Ligation Assay (PLA) in neuronal primary cultures, where it was observed that the expression of CB1R-NMDAR complexes was decreased upon α-synuclein treatment. These results point to a role of CB1R-NMDAR complexes as a new therapeutic target in Parkinson's disease.


Assuntos
Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
3.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139329

RESUMO

Cannabidiol (CBD) is a phytocannabinoid with potential as a therapy for a variety of diseases. CBD may act via cannabinoid receptors but also via other G-protein-coupled receptors (GPCRs), including the adenosine A2A receptor. Homogenous binding and signaling assays in Chinese hamster ovary (CHO) cells expressing the human version of the A2A receptor were performed to address the effect of CBD on receptor functionality. CBD was not able to compete for the binding of a SCH 442416 derivative labeled with a red emitting fluorescent probe that is a selective antagonist that binds to the orthosteric site of the receptor. However, CBD reduced the effect of the selective A2A receptor agonist, CGS 21680, on Gs-coupling and on the activation of the mitogen activated kinase signaling pathway. It is suggested that CBD is a negative allosteric modulator of the A2A receptor.


Assuntos
Canabidiol , Cricetinae , Animais , Humanos , Canabidiol/farmacologia , Receptor A2A de Adenosina , Células CHO , Cricetulus , Transdução de Sinais
4.
Cells ; 12(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37759436

RESUMO

Microglial activation often accompanies the plastic changes occurring in the brain of patients with neurodegenerative diseases. A2A and A3 adenosine receptors have been proposed as therapeutic targets to combat neurodegeneration. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with SCH 58261, a selective A2A receptor antagonist, and with both SCH 58261 and 2-Cl-IB-MECA, a selective A3 receptor agonist. None of the treatments led to any clear microglial phenotype when gene expression for classical biomarkers of microglial polarization was assessed. However, many of the downregulated genes were directly or indirectly related to immune system-related events. Searching for genes whose expression was both significantly and synergistically affected when treated with the two adenosine receptor ligands, the AC122413.1 and Olfr56 were selected among those that were, respectively, upregulated and downregulated. We therefore propose that the products of these genes, olfactory receptor 56 and T-cell activation GTPase-activating protein 1, deserve attention as potential biomarkers of phenotypes that occur upon microglial activation.

5.
J Chem Inf Model ; 63(18): 5927-5935, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37644761

RESUMO

(-)-Δ9-trans-tetrahydrocannabinol (THC), which is the principal psychoactive constituent of Cannabis, mediates its action by binding to two members of the G-protein-coupled receptor (GPCR) family: the cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors. Molecular dynamics simulations showed that the pentyl chain of THC could adopts an I-shape conformation, filling an intracellular cavity between Phe3.36 and Trp6.48 for initial agonist-induced receptor activation, in CB1R but not in CB2R. This cavity opens to the five-carbon chain of THC by the conformational change of the γ-branched, flexible, Leu6.51 side chain of CB1R, which is not feasible by the ß-branched, mode rigid, Val6.51 side chain of CB2R. In agreement with our computational results, THC could not decrease the forskolin-induced cAMP levels in cells expressing mutant CB1RL6.51V receptor but could activate the mutant CB2RV6.51L receptor as efficiently as wild-type CB1R. Additionally, JWH-133, a full CB2R agonist, contains a branched dimethyl moiety in the ligand chain that bridges Phe3.36 and Val6.51 for receptor activation. In this case, the substitution of Val6.51 to Leu in CB2R makes JWH-133 unable to activate CB2RV6.51L. In conclusion, our combined computational and experimental results have shown that the amino acid at position 6.51 is a key additional player in the initial mechanism of activation of GPCRs that recognize signaling molecules derived from lipid species.


Assuntos
Canabinoides , Dronabinol , Receptores de Canabinoides , Dronabinol/farmacologia , Canabinoides/farmacologia , Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
6.
Front Pharmacol ; 14: 1108617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266149

RESUMO

Heteromer formation is unknown for the olfactory family of G protein-coupled receptors (GPCRs). We here identified, in a heterologous system, heteromers formed by the adenosine A2A receptor (A2AR), which is a target for neuroprotection, and an olfactory receptor. A2AR interacts with the receptor family 51, subfamily E, member 2 (OR51E2), the human ortholog of the mouse Olfr-78, whose mRNA is differentially expressed in activated microglia treated with adenosine receptor ligands. Bioluminescence resonance energy transfer (BRET) assays were performed in HEK-293T cells expressing the human version of the receptors, OR51E2 and A2AR, fused, respectively, to Renilla luciferase (RLuc) and the yellow fluorescent protein (YFP). BRET data was consistent with a receptor-receptor interaction whose consequences at the functional level were measured by cAMP level determination in CHO cells. Results showed an olfactory receptor-mediated partial blockade of Gs coupling to the A2AR, i.e., the effect of the A2AR selective agonist on intracellular levels of cAMP was significantly reduced. Two odorants, menthol and 1,8-cineole, which failed to show Golf-mediated OR51E2 activation because they did not increase cytosolic cAMP levels, reduced the BRET readings in cells expressing A2AR-YFP and OR51E2-Rluc, most likely suggesting a conformational change of at least one receptor. These odorants led to an almost complete block of A2AR coupling to Gs.

7.
Exp Neurol ; 362: 114319, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36632949

RESUMO

It is of particular interest the potential of cannabinoid and angiotensin receptors as targets in the therapy of Parkinson's disease (PD). While endocannabinoids are neuromodulators that act through the CB1 and CB2 cannabinoid receptors, the renin angiotensin-system is relevant for regulation of the correct functioning of several brain circuits. Resonance energy transfer assays in a heterologous system showed that the CB1 receptor (CB1R) can directly interact with the angiotensin AT2 receptor (AT2R). Coactivation of the two receptors results in increased Gi-signaling. The AT2-CB1 receptor heteromer imprint consists of a blockade of AT2R-mediated signaling by rimonabant, a CB1R antagonist. Interestingly, the heteromer imprint, discovered in the heterologous system, was also found in primary striatal neurons thus demonstrating the expression of the heteromer in these cells. In situ proximity ligation assays confirmed the occurrence of AT2-CB1 receptor heteromers in striatal neurons. In addition, increased expression of the AT2-CB1 receptor heteromeric complexes was detected in the striatum of a rodent PD model consisting of rats hemilesioned using 6-hydroxydopamine. Expression of the heteromer was upregulated in the striatum of lesioned animals and, also, of lesioned animals that upon levodopa treatment became dyskinetic. In contrast, there was no upregulation in the striatum of lesioned rats that did not become dyskinetic upon chronic levodopa treatment. The results suggest that therapeutic developments focused on the CB1R should consider that this receptor can interact with the AT2R, which in the CNS is involved in mechanisms related to addictive behaviors and to neurodegenerative and neuroinflammatory diseases.


Assuntos
Canabinoides , Doença de Parkinson , Ratos , Animais , Receptores de Canabinoides/metabolismo , Levodopa , Oxidopamina , Corpo Estriado/metabolismo , Doença de Parkinson/metabolismo , Receptores de Angiotensina , Angiotensinas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
8.
Purinergic Signal ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36703008

RESUMO

Most neurodegenerative disorders, including the two most common, Alzheimer's disease (AD) and Parkinson's disease (AD), course with activation of microglia, the resident innate immune cells of the central nervous system. A3 adenosine receptor (A3R) agonists have been proposed to be neuroprotective by regulating the phenotype of activated microglia. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with 2-Cl-IB-MECA, a selective A3R agonist. The results showed that the number of negatively regulated genes in the presence of 2-Cl-IB-MECA was greater than the number of positively regulated genes. Gene ontology enrichment analysis showed regulation of genes participating in several cell processes, including those involved in immune-related events. Analysis of known and predicted protein-protein interactions showed that Smad3 and Sp1 are transcription factors whose genes are regulated by A3R activation. Under the conditions of cell activation and agonist treatment regimen, 2-Cl-IB-MECA did not lead to any tendency to favor the expression of genes related to neuroprotective microglia (M2).

9.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361598

RESUMO

Microdialysis assays demonstrated a possible role of orexin in the regulation of amyloid beta peptide (Aß) levels in the hippocampal interstitial fluid in the APP transgenic model. CB2R is overexpressed in activated microglia, showing a neuroprotective effect. These two receptors may interact, forming CB2-OX1-Hets and becoming a new target to combat Alzheimer's disease. Aims: Demonstrate the potential role of CB2-OX1-Hets expression and function in microglia from animal models of Alzheimer's disease. Receptor heteromer expression was detected by immunocytochemistry, bioluminescence resonance energy transfer (BRET) and proximity ligation assay (PLA) in transfected HEK-293T cells and microglia primary cultures. Quantitation of signal transduction events in a heterologous system and in microglia cells was performed using the AlphaScreen® SureFire® kit, western blot, the GCaMP6 calcium sensor and the Lance Ultra cAMP kit (PerkinElmer). The formation of CB2-OX1 receptor complexes in transfected HEK-293T cells has been demonstrated. The tetrameric complex is constituted by one CB2R homodimer, one OX1R homodimer and two G proteins, a Gi and a Gq. The use of TAT interfering peptides showed that the CB2-OX1 receptor complex interface is TM4-TM5. At the functional level it has been observed that the OX1R antagonist, SB334867, potentiates the action induced by CB2R agonist JWH133. This effect is observed in transfected HEK-293T cells and microglia, and it is stronger in the Alzheimer's disease (AD) animal model APPSw/Ind where the expression of the complex assessed by the proximity ligation assay indicates an increase in the number of complexes compared to resting microglia. The CB2-OX1 receptor complex is overexpressed in microglia from AD animal models where OX1R antagonists potentiate the neuroprotective actions of CB2R activation. Taken together, these results point to OX1R antagonists as drugs with therapeutic potential to combat AD. Data access statement: Raw data will be provided by the corresponding author upon reasonable requirement.


Assuntos
Doença de Alzheimer , Microglia , Animais , Camundongos , Microglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo
10.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077095

RESUMO

Background: Cannabidiol (CBD) is a phytocannabinoid with potential in one of the most prevalent syndromes occurring at birth, the hypoxia of the neonate. CBD targets a variety of proteins, cannabinoid CB2 and serotonin 5HT1A receptors included. These two receptors may interact to form heteromers (CB2-5HT1A-Hets) that are also a target of CBD. Aims: We aimed to assess whether the expression and function of CB2-5HT1A-Hets is affected by CBD in animal models of hypoxia of the neonate and in glucose- and oxygen-deprived neurons. Methods: We developed a quantitation of signal transduction events in a heterologous system and in glucose/oxygen-deprived neurons. The expression of receptors was assessed by immuno-cyto and -histochemistry and, also, by using the only existing technique to visualize CB2-5HT1A-Hets fixed cultured cells and tissue sections (in situ proximity ligation PLA assay). Results: CBD and cannabigerol, which were used for comparative purposes, affected the structure of the heteromer, but in a qualitatively different way; CBD but not CBG increased the affinity of the CB2 and 5HT1A receptor-receptor interaction. Both cannabinoids regulated the effects of CB2 and 5HT1A receptor agonists. CBD was able to revert the upregulation of heteromers occurring when neurons were deprived of oxygen and glucose. CBD significantly reduced the increased expression of the CB2-5HT1A-Het in glucose/oxygen-deprived neurons. Importantly, in brain sections of a hypoxia/ischemia animal model, administration of CBD led to a significant reduction in the expression of CB2-5HT1A-Hets. Conclusions: Benefits of CBD in the hypoxia of the neonate are mediated by acting on CB2-5HT1A-Hets and by reducing the aberrant expression of the receptor-receptor complex in hypoxic-ischemic conditions. These results reinforce the potential of CBD for the therapy of the hypoxia of the neonate.


Assuntos
Canabidiol , Canabinoides , Animais , Canabidiol/farmacologia , Canabinoides/metabolismo , Canabinoides/farmacologia , Modelos Animais de Doenças , Glucose , Hipóxia , Neurônios/metabolismo , Oxigênio , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Receptor 5-HT1A de Serotonina , Serotonina
11.
Biomedicines ; 10(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203424

RESUMO

Adenosine (Ado) receptors have been instrumental in the detection of heteromers and other higher-order receptor structures, mainly via interactions with other cell surface G-protein-coupled receptors. Apart from the first report of the A1 Ado receptor interacting with the A2A Ado receptor, there has been more recent data on the possibility that every Ado receptor type, A1, A2A, A2B, and A3, may interact with each other. The aim of this paper was to look for the expression and function of the A2A/A3 receptor heteromer (A2AA3Het) in neurons and microglia. In situ proximity ligation assays (PLA), performed in primary cells, showed that A2AA3Het expression was markedly higher in striatal than in cortical and hippocampal neurons, whereas it was similar in resting and activated microglia. Signaling assays demonstrated that the effect of the A2AR agonist, PSB 777, was reduced in the presence of the A3R agonist, 2-Cl-IB-MECA, whereas the effect of the A3R agonist was potentiated by the A2AR antagonist, SCH 58261. Interestingly, the expression of the heteromer was markedly enhanced in microglia from the APPSw,Ind model of Alzheimer's disease. The functionality of the heteromer in primary microglia from APPSw,Ind mice was more similar to that found in resting microglia from control mice.

12.
Front Cell Neurosci ; 15: 786597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955755

RESUMO

There is evidence of ghrelinergic-cannabinoidergic interactions in the central nervous system (CNS) that may impact on the plasticity of reward circuits. The aim of this article was to look for molecular and/or functional interactions between cannabinoid CB1 and ghrelin GHS-R1a receptors. In a heterologous system and using the bioluminescence resonance energy transfer technique we show that human versions of cannabinoid CB1 and ghrelin GHS-R1a receptors may form macromolecular complexes. Such receptor heteromers have particular properties in terms of CB1/Gi-mediated signaling and in terms of GHS-R1a-Gq-mediated signaling. On the one hand, just co-expression of CB1R and GHS-R1a led to impairment of cannabinoid signaling. On the other hand, cannabinoids led to an increase in ghrelin-derived calcium mobilization that was stronger at low concentrations of the CB1 receptor agonist, arachidonyl-2'-chloroethylamide (ACEA). The expression of CB1-GHS-R1a receptor complexes in striatal neurons was confirmed by in situ proximity ligation imaging assays. Upregulation of CB1-GHS-R1a- receptor complexes was found in striatal neurons from siblings of pregnant female mice on a high-fat diet. Surprisingly, the expression was upregulated after treatment of neurons with ghrelin (200 nM) or with ACEA (100 nM). These results help to better understand the complexities underlying the functional interactions of neuromodulators in the reward areas of the brain.

13.
Pharmacol Res ; 174: 105970, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758399

RESUMO

We have here assessed, using Δ9-tetrahydrocannabinol (Δ9-THC) for comparison, the effect of Δ9-tetrahydrocannabinolic acid (Δ9-THCA) and of Δ9-tetrahydrocannabivarin (Δ9-THCV) that is mediated by human versions of CB1, CB2, and CB1-CB2 receptor functional units, expressed in a heterologous system. Binding to the CB1 and CB2 receptors was addressed in living cells by means of a homogeneous assay. A biphasic competition curve for the binding to the CB2 receptor, was obtained for Δ9-THCV in cells expressing the two receptors. Signaling studies included cAMP level determination, activation of the mitogen-activated protein kinase pathway and ß-arrestin recruitment were performed. The signaling triggered by Δ9-THCA and Δ9-THCV via individual receptors or receptor heteromers disclosed differential bias, i.e. the bias observed using a given phytocannabinoid depended on the receptor (CB1, CB2 or CB1-CB2) and on the compound used as reference to calculate the bias factor (Δ9-THC, a selective agonist or a non-selective agonist). These results are consistent with different binding modes leading to differential functional selectivity depending on the agonist structure, and the state (monomeric or heteromeric) of the cannabinoid receptor. In addition, on studying Gi-coupling we showed that Δ9-THCV and Δ9-THCA and Δ9-THCV were able to revert the effect of a selective CB2 receptor agonist, but only Δ9-THCV, and not Δ9-THCA, reverted the effect of arachidonyl-2'-chloroethylamide (ACEA 100 nM) a selective agonist of the CB1 receptor. Overall, these results indicate that cannabinoids may have a variety of binding modes that results in qualitatively different effects depending on the signaling pathway that is engaged upon cannabinoid receptor activation.


Assuntos
Dronabinol/análogos & derivados , Dronabinol/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Ligação Competitiva , Células HEK293 , Humanos , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética
14.
Alzheimers Res Ther ; 13(1): 184, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749800

RESUMO

BACKGROUND: The cannabinoid CB2 receptor (CB2R), which is a target to afford neuroprotection, and N-methyl-D-aspartate (NMDA) ionotropic glutamate receptors, which are key in mediating excitatory neurotransmission, are expressed in both neurons and glia. As NMDA receptors are the target of current medication in Alzheimer's disease patients and with the aim of finding neuromodulators of their actions that could provide benefits in dementia, we hypothesized that cannabinoids could modulate NMDA function. METHODS: Immunocytochemistry was used to analyze the colocalization between CB2 and NMDA receptors; bioluminescence resonance energy transfer was used to detect CB2-NMDA receptor complexes. Calcium and cAMP determination, mitogen-activated protein kinase (MAPK) pathway activation, and label-free assays were performed to characterize signaling in homologous and heterologous systems. Proximity ligation assays were used to quantify CB2-NMDA heteromer expression in mouse primary cultures and in the brain of APPSw/Ind transgenic mice, an Alzheimer's disease model expressing the Indiana and Swedish mutated version of the human amyloid precursor protein (APP). RESULTS: In a heterologous system, we identified CB2-NMDA complexes with a particular heteromer print consisting of impairment by cannabinoids of NMDA receptor function. The print was detected in activated primary microglia treated with lipopolysaccharide and interferon-γ. CB2R activation blunted NMDA receptor-mediated signaling in primary hippocampal neurons from APPSw/Ind mice. Furthermore, imaging studies showed that in brain slices and in primary cells (microglia or neurons) from APPSw/Ind mice, there was a marked overexpression of macromolecular CB2-NMDA receptor complexes thus becoming a tool to modulate excessive glutamate input by cannabinoids. CONCLUSIONS: The results indicate a negative cross-talk in CB2-NMDA complexes signaling. The expression of the CB2-NMDA receptor heteromers increases in both microglia and neurons from the APPSw/Ind transgenic mice, compared with levels in samples from age-matched control mice.


Assuntos
Canabinoides , Microglia , Receptores de Canabinoides , Receptores de N-Metil-D-Aspartato , Animais , Hipocampo/metabolismo , Humanos , Camundongos , Microglia/metabolismo , N-Metilaspartato , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445634

RESUMO

Cannabinoids have been reported as orexigenic, i.e., as promoting food intake that, among others, is controlled by the so-called "hunger" hormone, ghrelin. The aim of this paper was to look for functional and/or molecular interactions between ghrelin GHSR1a and cannabinoid CB2 receptors at the central nervous system (CNS) level. In a heterologous system we identified CB2-GHSR1a receptor complexes with a particular heteromer print consisting of impairment of CB2 receptor/Gi-mediated signaling. The blockade was due to allosteric interactions within the heteromeric complex as it was reverted by antagonists of the GHSR1a receptor. Cannabinoids acting on the CB2 receptor did not affect cytosolic increases of calcium ions induced by ghrelin acting on the GHSR1a receptor. In situ proximity ligation imaging assays confirmed the expression of CB2-GHSR1a receptor complexes in both heterologous cells and primary striatal neurons. We tested heteromer expression in neurons from offspring of high-fat-diet mouse mothers as they have more risk to be obese. Interestingly, there was a marked upregulation of those complexes in striatal neurons from siblings of pregnant female mice under a high-fat diet.


Assuntos
Corpo Estriado/patologia , Dieta Hiperlipídica/efeitos adversos , Grelina/metabolismo , Neurônios/patologia , Obesidade/patologia , Receptor CB2 de Canabinoide/metabolismo , Receptores de Grelina/metabolismo , Animais , Canabinoides/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Feminino , Grelina/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptor CB2 de Canabinoide/genética , Receptores de Grelina/genética , Transdução de Sinais , Regulação para Cima
16.
Front Cell Dev Biol ; 9: 667815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937270

RESUMO

5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.

17.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803075

RESUMO

Methamphetamine is, worldwide, one of the most consumed drugs of abuse. One important side effect is neurodegeneration leading to a decrease in life expectancy. The aim of this paper was to check whether the drug affects one of the receptors involved in neurodegeneration/neuroprotection events, namely the adenosine A2A receptor (A2AR). First, we noticed that methamphetamine does not affect A2A functionality if the receptor is expressed in a heterologous system. However, A2AR becomes sensitive to the drug upon complexes formation with the cannabinoid CB1 receptor (CB1R) and the sigma 1 receptor (σ1R). Signaling via both adenosine A2AR and cannabinoid CB1R was affected by methamphetamine in cells co-expressing the two receptors. In striatal primary cultures, the A2AR-CB1R heteromer complex was detected and methamphetamine not only altered its expression but completely blocked the A2AR- and the CB1R-mediated activation of the mitogen activated protein kinase (MAPK) pathway. In conclusion, methamphetamine, with the participation of σ1R, alters the expression and function of two interacting receptors, A2AR, which is a therapeutic target for neuroprotection, and CB1R, which is the most abundant G protein-coupled receptor (GPCR) in the brain.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Corpo Estriado/metabolismo , Metanfetamina/farmacologia , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores sigma/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos
18.
Neurotherapeutics ; 18(2): 998-1016, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33474655

RESUMO

The renin-angiotensin system (RAS) not only plays an important role in controlling blood pressure but also participates in almost every process to maintain homeostasis in mammals. Interest has recently increased because SARS viruses use one RAS component (ACE2) as a target-cell receptor. The occurrence of RAS in the basal ganglia suggests that the system may be targeted to improve the therapy of neurodegenerative diseases. RAS-related data led to the hypothesis that RAS receptors may interact with each other. The aim of this paper was to find heteromers formed by Mas and angiotensin receptors and to address their functionality in neurons and microglia. Novel interactions were discovered by using resonance energy transfer techniques. The functionality of individual and interacting receptors was assayed by measuring levels of the second messengers cAMP and Ca2+ in transfected human embryonic kidney cells (HEK-293T) and primary cultures of striatal cells. Receptor complex expression was assayed by in situ proximity ligation assay. Functionality and expression were assayed in parallel in primary cultures of microglia treated or not with lipopolysaccharide and interferon-γ (IFN-γ). The proximity ligation assay was used to assess heteromer expression in parkinsonian and dyskinetic conditions. Complexes formed by Mas and the angiotensin AT1 or AT2 receptors were identified in both a heterologous expression system and in neural primary cultures. In the heterologous system, we showed that the three receptors-MasR, AT1R, and AT2R-can interact to form heterotrimers. The expression of receptor dimers (AT1R-MasR or AT2R-MasR) was higher in microglia than in neurons and was differentially affected upon microglial activation with lipopolysaccharide and IFN-γ. In all cases, agonist-induced signaling was reduced upon coactivation, and in some cases just by coexpression. Also, the blockade of signaling of two receptors in a complex by the action of a given (selective) receptor antagonist (cross-antagonism) was often observed. Differential expression of the complexes was observed in the striatum under parkinsonian conditions and especially in animals rendered dyskinetic by levodopa treatment. The negative modulation of calcium mobilization (mediated by AT1R activation), the multiplicity of possibilities on RAS affecting the MAPK pathway, and the disbalanced expression of heteromers in dyskinesia yield new insight into the operation of the RAS system, how it becomes unbalanced, and how a disbalanced RAS can be rebalanced. Furthermore, RAS components in activated microglia warrant attention in drug-development approaches to address neurodegeneration.


Assuntos
Microglia/metabolismo , Transtornos Parkinsonianos/metabolismo , Proto-Oncogene Mas/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Proto-Oncogene Mas/agonistas , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/agonistas , Sistema Renina-Angiotensina/efeitos dos fármacos
19.
Br J Pharmacol ; 178(7): 1507-1523, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444462

RESUMO

BACKGROUND AND PURPOSE: The enzyme α/ß-hydrolase domain containing 6 (ABHD6), a new member of the endocannabinoid system, is a promising therapeutic target against neuronal-related diseases. However, how ABHD6 activity is regulated is not known. ABHD6 coexists in protein complexes with the brain-specific carnitine palmitoyltransferase 1C (CPT1C). CPT1C is involved in neuro-metabolic functions, depending on brain malonyl-CoA levels. Our aim was to study CPT1C-ABHD6 interaction and determine whether CPT1C is a key regulator of ABHD6 activity depending on nutritional status. EXPERIMENTAL APPROACH: Co-immunoprecipitation and FRET assays were used to explore ABHD6 interaction with CPT1C or modified malonyl-CoA-insensitive or C-terminal truncated CPT1C forms. Cannabinoid CB1 receptor-mediated signalling was investigated by determining cAMP levels. A novel highly sensitive fluorescent method was optimized to measure ABHD6 activity in non-neuronal and neuronal cells and in brain tissues from wild-type (WT) and CPT1C-KO mice. KEY RESULTS: CPT1C interacted with ABHD6 and negatively regulated its hydrolase activity, thereby regulating 2-AG downstream signalling. Accordingly, brain tissues of CPT1C-KO mice showed increased ABHD6 activity. CPT1C malonyl-CoA sensing was key to the regulatory role on ABHD6 activity and CB1 receptor signalling. Fasting, which attenuates brain malonyl-CoA, significantly increased ABHD6 activity in hypothalamus from WT, but not CPT1C-KO, mice. CONCLUSIONS AND IMPLICATIONS: Our finding that negative regulation of ABHD6 activity, particularly in the hypothalamus, is sensitive to nutritional status throws new light on the characterization and the importance of the proteins involved as potential targets against diseases affecting the CNS.


Assuntos
Carnitina O-Palmitoiltransferase , Monoacilglicerol Lipases/metabolismo , Estado Nutricional , Animais , Carnitina O-Palmitoiltransferase/genética , Hidrolases , Malonil Coenzima A , Camundongos
20.
Adv Exp Med Biol ; 1264: 81-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33332005

RESUMO

Three prevalent neurodegenerative diseases, Parkinson's, Alzheimer's, and Huntington's are in need of symptomatic relief of slowing disease progression or both. This chapter focuses on the potential of cannabinoids to afford neuroprotection, i.e. avoid or retard neuronal death. The neuroprotective potential of cannabinoids is known from the work in animal models and is mediated by the two cannabinoid receptors (CB1/CB2) and eventually, by their heteromers, GPR55, orphan receptors (GPR3/GPR6/GPR12/GPR18), or PPARγ. Now, there is the time to translate the findings into patients. The chapter takes primarily into account advances since 2016 and addresses the issue of proving neuroprotection in humans. One recent discovery is the existence of activated microglia with neuroprotective phenotype; cannabinoids are good candidates to skew phenotype, especially via glial CB2 receptors (CB2R), whose targeting has, a priori, less side effects those targeting the CBs1 receptor (CB1R), which are expressed in both neurons and glia. The fact that a cannabis extract (SativexTM) is approved for human therapy, such that cannabis use will likely be legalized in many countries and different possibilities that cannabinoid pharmacology suggests a successful route of cannabinoids (natural or synthetic) all the way to be approved and used in the treatment of neurodegeneration.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Doença de Huntington/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...